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Abstract 
Highlight spots could often cause artifacts in image-based 

visual hull (IBVH) rendering. In this paper, we propose a method 
that can remove highlight spots from reference images by utilizing 
the features of visual hull. First, we find the counterparts of a 
highlight sub-image in other images, with the aid of the 
correspondence between reference images in visual hull rendering. 
Then the illumination and color detail of the pixels in the sub-
image could be retrieved from their corresponding pixels by color 
blending. Thus, highlight spots are removed seamlessly without 
affecting other regions of the scene. Using this improved rendering 
method, we can obtain more realistic and precise result, and re-
lighting of the visual hull also becomes possible. 

Introduction  
Visual hull is an efficient technique for image-based 

rendering. Its main idea comes from 3D reconstruction methods of 
“Shape-from-Silhouette”. It takes a group of photos as input, and 
produces a convex hull of the target object. Same as other image-
based methods, visual hull also suffers from the highlight spots on 
the images, because they could often cause undesired artifacts in 
rendering, especially when the illumination in the virtual 
environment is changed. 

In literatures, some image editing methods have been 
proposed to remove highlight spots from photos. Some of them 
need more than one photo at a single position to complete this task. 
For instance, the method of Agrawal et al [1] requires a pair of 
flash and ambient images, taken at the same position, and reduces 
highlights by comparing their image gradients. This kind of 
method is not practical in visual hull rendering, because it will 
largely increase the difficulty of acquiring and storing source 
images. 

Some other methods could work on a single image, such as 
[2] and [3]. The former introduces illumination-based constrains 
into image inpainting, and the latter changes local illumination by 
solving Poisson equations. However, they only report good results 
when highlight spots lie in areas with simple or uniformly textured 
background. On another aspect, single-image-based methods 
cannot guarantee the consistency of corresponding areas in 
different source images, which is very important in visual hull 
rendering. 

In fact, visual hull method itself provides much convenience 
for highlight removal. The source images, also called reference 
images, of a visual hull often have much overlaps. These overlaps 
will offer sufficient information to remove highlights. That is 
because the counterpart of a highlighted area in another image is 
often out of highlight, due to the relative movement of the object 
and the light. 

Utilizing the calibration information of the cameras, the 
correspondence of pixels in different images could be found during 

the constructing of the visual hull. Thus, highlighted areas could 
be resampled from other reference images, and a new reference 
image without highlight spots could be generated by certain pixel 
blending strategy. With these new images, we could obtain more 
realistic and precise rendering result, and re-lighting of the visual 
hull is also possible. 

In this paper, we employ an Image-based Visual Hull (IBVH) 
rendering method [4], which is described in the second section. 
The approach to interactively removing highlight spots in IBVH 
rendering is detailed in the third section, and the experiment results 
follow in the last. 

Visual Hull Rendering Methods 
The research on visual hull reconstruction dates back to 1970s 

[5]. Its main idea comes from “Shape-from-Silhouette”. A 
reference image is separated into foreground and background. The 
foreground mask, i.e. silhouette, along with the calibration 
information of the camera, defines a back-projected cone in 3D 
space that contains the target object. Thus, the intersection of all 
silhouette cones forms a convex hull, which is the visual hull of 
the object. 

There are mainly two sorts of visual hull construction 
methods: voxel-based and boundary-based methods. [6] 

Voxel-based methods [7, 8] usually start from a working 
volume, which contains the target object and is quantized into 
voxels. The voxels are one by one put through tests: those lie 
inside all silhouette cones are preserved; the others are cleared. 
Therefore, the remaining voxels form the visual hull of the object. 
These methods are able to reconstruct very complex objects, such 
as trees. However, they usually suffer from quantization artifacts 
and are very expensive in both space and time costs. 

In boundary-based methods [4, 9], silhouette cones are 
represented as boundary elements, such as surfaces or lines. The 
visual hull is constructed by computing the intersection of these 
elements, and the result could be composed by a group of surfaces 
patches, line segments, or points. Such methods usually consume 
little memory and run faster than voxel-based methods, and 
quantization artifacts are avoided. If necessary, boundary-
represented visual hull could also be triangulated into meshes to 
produce an explicit 3D model. That makes it more useful in 
applications. However, these methods cannot reconstruct concave 
or very complex objects. 

Image-based Visual Hull Rendering Method 
In this paper, we adopt a method called Image-based Visual 

Hull (IBVH). It is a boundary-based method, originally proposed 
by Matusik et al [4].  

In this algorithm, silhouettes are represented as a bench of 3D 
rays emitted from a desired view, and the resulting visual hull is 
made up of a group of line segments. It is remarkable that the 
computing is limited to the image space of the reference images, 



 

 

and the result is view-dependent, which makes the method quite 
efficient. 

As illustrated in Fig. 1, the kernel algorithm of IBVH method 
includes three main steps: 

First, for every pixel of the desired view, a viewing ray is 
calculated, which is emitted from the virtual camera center and 
passes through current pixel. By using the calibration information 
of cameras and epipolar geometry theory, the projection of this 
viewing ray on a reference image, i.e. the epipolar line could be 
computed.  

Second, the epipolar line intersects the 2D silhouette on the 
reference image, and results in a group of 2D intervals. To reduce 
the computation cost and increase speed, the original algorithm 
sorts silhouette edges in so-called bin structures by their slopes. In 
our implementation, we adopt a different strategy in building bins: 
instead of slopes, the edges are sorted by their direction angles, so 
that all edges could be properly sorted, even when the epipole (the 
intersection point of all epipolar lines) falls in the object area. 

Third, the 2D intervals on the reference image are projected 
back to 3D space and get corresponding 3D segments on the 
viewing ray. Then the intersection of all the 3D segments from all 
the reference images indicates the visual hull boundary at current 
pixel of desired view. Projecting the nearest endpoint of final 3D 
segments onto the reference images, the color of current pixel 
could be synthesized. 

Removing Highlight Spots on Visual Hull 
The IBVH rendering method provides great convenience in 

finding pixel correspondence between reference images. Utilizing 
this correspondence, we could rapidly remove highlight spots by 
resampling the target image, using the information from its 
counterparts on other reference images.  

To reduce computing cost and minimize the error introduced 
by pixel mapping and resampling, we first select sub-images that 
contain highlight spots interactively. The resampling performance 
would be applied only to these selected highlight sub-images, and 
the rest part of the image would remain unchanged. 

Pixel Correspondence between Reference Images 
The approach to finding pixel correspondence between 

different reference images is similar to that of rendering a desired 
new view in IBVH, as described in the last section. Their 
fundamental differences lie in: 1) When rendering a desired view, 
the target image is a new, virtual and synthesized one, but here it is 
exactly one of the reference images; 2) The calculations are no 
longer performed over the whole image, but limited to the selected 
highlight sub-images. 

Fig. 2 gives an illustration of how pixel correspondences are 
found. Given a target image I0, for every pixel p0 in a highlight 
sub-image, we could also compute a 3D viewing ray r. For another 
reference image Ik, the epipolar line of p0 (denoted as le) is 
calculated by using the fundamental matrix between I0 and Ik. If 
line le intersects the silhouette of Ik at point pa

k and pb
k, then there 

are two 3D rays, ra
k and rb

k that are emitted from camera Ck and 
pass through pa

k and pb
k, respectively. Note that r, ra

k and rb
k are 

all in the same plane. Therefore, they would intersect and result in 
a 3D segment (va

k, vb
k).  

Applying the same calculation to other reference images, we 
get a group of 3D segments {(va

k, vb
k) | k=1…n} (n is the number 

of images in use). The intersection of all these segments, denoted 
as (va, vb), is considered as the intersection of r and the visual hull 
of the object, and the nearer endpoint va is the corresponding 3D 
point of pixel p0. Utilizing the calibration information of camera 
Ck, va can be projected onto image Ik, and get pixel pk. So far, we 
have found the corresponding pixel of p0 on every reference 
images. 

Highlight Sub-image Resampling 
When the counterparts of a highlight sub-image on other 

reference images are found, we must re-calculate the color of its 
pixels to reduce highlight effect. This is completed by blending the 
appearance colors of pixel p0 and its corresponding pixels {pk | 
k=1…n}. 

The fact that we could take advantage of is: usually, due to 
the relative movement of the object and the light, most part of the 

 
Figure 1. The three steps of IBVH computing [4]: 1) A desired viewing ray is 
projected to a reference image. 2) The epipolar line intersects the 
silhouette. 3) The resulting 2D intervals are projected back to 3D and get 
corresponding 3D segments. 

Figure 2. The procedure of looking for the corresponding pixels of p0 on 
other reference images. 
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corresponding region of current sub-image is out of highlight area 
(Fig. 3). Based on this fact, we assume that the majority of the 
appearance colors of {pk | k=0…n} are mainly distributed around 
the true diffuse color. Thus, when blending the colors, the pixel 
whose color deviates far from the others would be given small 
weight. On the contrary, those that are closer to the average color 
would be given larger weight. 

In fact, highlight could be represented and detected well 
enough in gray-scaled images, so we need only calculate the gray 
level deviation of the pixels. That makes the calculation simpler. 
Let gk be the gray level of pixel pk, and the average gray level of 
{pk | k=0…n} is 
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Then the weight of pk could be defined by the reciprocal of the 
squared deviation of gk: 
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The coefficient ck is a constant, which guarantees the sum of wk to 
be 1. Finally, the colors of {pk | k=0…n} are blended according to 
the following formula: 
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Here, (Rk, Gk, Bk) is the RGB color of pk, and (R, G, B) is the final 
color for pixel p0. 
 

Note that we assume n reference images (besides the target 
image) are used in resampling and blending a pixel. These n 
images are selected from all reference images according to the 
angles between the viewing ray of current pixel and the rays of its 
corresponding pixels. Only the images with the smallest angles, i.e. 
the closest n images are used to fix the target pixel. 

Using a larger number of images will make the average color 
closer to the true color and help to filter out highlighted pixels. 
However, it does not always lead to better result, for blending 
more pixel colors would cause blurring effect, especially in the 
areas with complex texture. To get a globally better result, we 
adjust the value of n according to each sub-image’s gray level 
deviation sum. 

Assume the current sub-image is composed of m pixels, and 
each pixel has a gray level of bi. Then the average gray level is 
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and the deviation sum is 
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Then a given threshold τ determines the value of n: 
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That means a sub-image with more complex texture will be given 
a smaller n to prevent blurring, and a sub-image with simpler 
texture will be given a larger n for smoother result. 

Experimental Results 
Applying the method described above, we can remove 

highlight spots from a group of cup photos and get satisfying 
rendering results.  

The original data includes 23 images, taken around the object 
by a digital camera. There are obvious highlight spots in each 
image. They are selected as in the left column of Fig. 4 (each 
rectangle is a highlight sub-image). Using the correspondence in 
the visual hull, the counterparts of a sub-image can be found in 
other images (as shown in Fig. 3). Then, each pixel in the sub-
image is blended with its corresponding pixels, and result in an 
image without highlight spots (right column of Fig. 4).  

When deciding the number of images in use, we let Nmax=9 
and Nmin=4, i.e. using 9 closest images in resampling a simple-
textured sub-image, and 4 in complex sub-images. 

  
 

  
Figure 4. The result of removing highlight spots from reference images. 
The left are original images (yellow rectangles are highlight sub-images); 
the right are the resampled image, in which highlight spots have been 
removed seamlessly. 

   
Figure 3. The counterparts of a highlight sub-image. Left: The target image 
(the yellow rectangle is the highlight sub-image); Right: The counterparts of 
the sub-image on two other reference images (Note that they include little 
highlight in them, because the object rotates while the light does not). 



 

 

More highlight removal results are shown in the left part of 
Fig. 5. With these resampled reference images, we can run visual 
hull method again to render the object at new viewpoints. The 
rendering results are free from highlights and are more realistic 
and precise in color (right of Fig. 5).  

Furthermore, highlight-free visual hulls would make it 
possible to change the illumination in the virtual environment, and 
re-light the object. All we need to do is re-calculating the diffuse 
and reflection color of the object according to the virtual lights. 
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Figure 5. The results of removing highlight spots from several reference images, and the corresponding visual hull rendering result. Top row: 
reference images (left) with highlight spots and their rendering result (right); Bottom row: resampled reference images (left) and the new rendering 
result without highlights (right). 
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