

Removing Highlight Spots in Visual Hull Rendering
Jie Feng, Liang Chen and Bingfeng Zhou
Institute of Computer Science & Technology, Peking University, Beijing, China

Abstract
Highlight spots could often cause artifacts in image-based

visual hull (IBVH) rendering. In this paper, we propose a method
that can remove highlight spots from reference images by utilizing
the features of visual hull. First, we find the counterparts of a
highlight sub-image in other images, with the aid of the
correspondence between reference images in visual hull rendering.
Then the illumination and color detail of the pixels in the sub-
image could be retrieved from their corresponding pixels by color
blending. Thus, highlight spots are removed seamlessly without
affecting other regions of the scene. Using this improved rendering
method, we can obtain more realistic and precise result, and re-
lighting of the visual hull also becomes possible.

Introduction
Visual hull is an efficient technique for image-based

rendering. Its main idea comes from 3D reconstruction methods of
“Shape-from-Silhouette”. It takes a group of photos as input, and
produces a convex hull of the target object. Same as other image-
based methods, visual hull also suffers from the highlight spots on
the images, because they could often cause undesired artifacts in
rendering, especially when the illumination in the virtual
environment is changed.

In literatures, some image editing methods have been
proposed to remove highlight spots from photos. Some of them
need more than one photo at a single position to complete this task.
For instance, the method of Agrawal et al [1] requires a pair of
flash and ambient images, taken at the same position, and reduces
highlights by comparing their image gradients. This kind of
method is not practical in visual hull rendering, because it will
largely increase the difficulty of acquiring and storing source
images.

Some other methods could work on a single image, such as
[2] and [3]. The former introduces illumination-based constrains
into image inpainting, and the latter changes local illumination by
solving Poisson equations. However, they only report good results
when highlight spots lie in areas with simple or uniformly textured
background. On another aspect, single-image-based methods
cannot guarantee the consistency of corresponding areas in
different source images, which is very important in visual hull
rendering.

In fact, visual hull method itself provides much convenience
for highlight removal. The source images, also called reference
images, of a visual hull often have much overlaps. These overlaps
will offer sufficient information to remove highlights. That is
because the counterpart of a highlighted area in another image is
often out of highlight, due to the relative movement of the object
and the light.

Utilizing the calibration information of the cameras, the
correspondence of pixels in different images could be found during

the constructing of the visual hull. Thus, highlighted areas could
be resampled from other reference images, and a new reference
image without highlight spots could be generated by certain pixel
blending strategy. With these new images, we could obtain more
realistic and precise rendering result, and re-lighting of the visual
hull is also possible.

In this paper, we employ an Image-based Visual Hull (IBVH)
rendering method [4], which is described in the second section.
The approach to interactively removing highlight spots in IBVH
rendering is detailed in the third section, and the experiment results
follow in the last.

Visual Hull Rendering Methods
The research on visual hull reconstruction dates back to 1970s

[5]. Its main idea comes from “Shape-from-Silhouette”. A
reference image is separated into foreground and background. The
foreground mask, i.e. silhouette, along with the calibration
information of the camera, defines a back-projected cone in 3D
space that contains the target object. Thus, the intersection of all
silhouette cones forms a convex hull, which is the visual hull of
the object.

There are mainly two sorts of visual hull construction
methods: voxel-based and boundary-based methods. [6]

Voxel-based methods [7, 8] usually start from a working
volume, which contains the target object and is quantized into
voxels. The voxels are one by one put through tests: those lie
inside all silhouette cones are preserved; the others are cleared.
Therefore, the remaining voxels form the visual hull of the object.
These methods are able to reconstruct very complex objects, such
as trees. However, they usually suffer from quantization artifacts
and are very expensive in both space and time costs.

In boundary-based methods [4, 9], silhouette cones are
represented as boundary elements, such as surfaces or lines. The
visual hull is constructed by computing the intersection of these
elements, and the result could be composed by a group of surfaces
patches, line segments, or points. Such methods usually consume
little memory and run faster than voxel-based methods, and
quantization artifacts are avoided. If necessary, boundary-
represented visual hull could also be triangulated into meshes to
produce an explicit 3D model. That makes it more useful in
applications. However, these methods cannot reconstruct concave
or very complex objects.

Image-based Visual Hull Rendering Method
In this paper, we adopt a method called Image-based Visual

Hull (IBVH). It is a boundary-based method, originally proposed
by Matusik et al [4].

In this algorithm, silhouettes are represented as a bench of 3D
rays emitted from a desired view, and the resulting visual hull is
made up of a group of line segments. It is remarkable that the
computing is limited to the image space of the reference images,

and the result is view-dependent, which makes the method quite
efficient.

As illustrated in Fig. 1, the kernel algorithm of IBVH method
includes three main steps:

First, for every pixel of the desired view, a viewing ray is
calculated, which is emitted from the virtual camera center and
passes through current pixel. By using the calibration information
of cameras and epipolar geometry theory, the projection of this
viewing ray on a reference image, i.e. the epipolar line could be
computed.

Second, the epipolar line intersects the 2D silhouette on the
reference image, and results in a group of 2D intervals. To reduce
the computation cost and increase speed, the original algorithm
sorts silhouette edges in so-called bin structures by their slopes. In
our implementation, we adopt a different strategy in building bins:
instead of slopes, the edges are sorted by their direction angles, so
that all edges could be properly sorted, even when the epipole (the
intersection point of all epipolar lines) falls in the object area.

Third, the 2D intervals on the reference image are projected
back to 3D space and get corresponding 3D segments on the
viewing ray. Then the intersection of all the 3D segments from all
the reference images indicates the visual hull boundary at current
pixel of desired view. Projecting the nearest endpoint of final 3D
segments onto the reference images, the color of current pixel
could be synthesized.

Removing Highlight Spots on Visual Hull
The IBVH rendering method provides great convenience in

finding pixel correspondence between reference images. Utilizing
this correspondence, we could rapidly remove highlight spots by
resampling the target image, using the information from its
counterparts on other reference images.

To reduce computing cost and minimize the error introduced
by pixel mapping and resampling, we first select sub-images that
contain highlight spots interactively. The resampling performance
would be applied only to these selected highlight sub-images, and
the rest part of the image would remain unchanged.

Pixel Correspondence between Reference Images
The approach to finding pixel correspondence between

different reference images is similar to that of rendering a desired
new view in IBVH, as described in the last section. Their
fundamental differences lie in: 1) When rendering a desired view,
the target image is a new, virtual and synthesized one, but here it is
exactly one of the reference images; 2) The calculations are no
longer performed over the whole image, but limited to the selected
highlight sub-images.

Fig. 2 gives an illustration of how pixel correspondences are
found. Given a target image I0, for every pixel p0 in a highlight
sub-image, we could also compute a 3D viewing ray r. For another
reference image Ik, the epipolar line of p0 (denoted as le) is
calculated by using the fundamental matrix between I0 and Ik. If
line le intersects the silhouette of Ik at point pa

k and pb
k, then there

are two 3D rays, ra
k and rb

k that are emitted from camera Ck and
pass through pa

k and pb
k, respectively. Note that r, ra

k and rb
k are

all in the same plane. Therefore, they would intersect and result in
a 3D segment (va

k, vb
k).

Applying the same calculation to other reference images, we
get a group of 3D segments {(va

k, vb
k) | k=1…n} (n is the number

of images in use). The intersection of all these segments, denoted
as (va, vb), is considered as the intersection of r and the visual hull
of the object, and the nearer endpoint va is the corresponding 3D
point of pixel p0. Utilizing the calibration information of camera
Ck, va can be projected onto image Ik, and get pixel pk. So far, we
have found the corresponding pixel of p0 on every reference
images.

Highlight Sub-image Resampling
When the counterparts of a highlight sub-image on other

reference images are found, we must re-calculate the color of its
pixels to reduce highlight effect. This is completed by blending the
appearance colors of pixel p0 and its corresponding pixels {pk |
k=1…n}.

The fact that we could take advantage of is: usually, due to
the relative movement of the object and the light, most part of the

Figure 1. The three steps of IBVH computing [4]: 1) A desired viewing ray is
projected to a reference image. 2) The epipolar line intersects the
silhouette. 3) The resulting 2D intervals are projected back to 3D and get
corresponding 3D segments.

Figure 2. The procedure of looking for the corresponding pixels of p0 on
other reference images.

r

pa
k

Pb
k

ra
k

rb
k

I0
Ik

va
k

vb
k

va

vb

pk
Is

ps

C0
Ck

le

p0

corresponding region of current sub-image is out of highlight area
(Fig. 3). Based on this fact, we assume that the majority of the
appearance colors of {pk | k=0…n} are mainly distributed around
the true diffuse color. Thus, when blending the colors, the pixel
whose color deviates far from the others would be given small
weight. On the contrary, those that are closer to the average color
would be given larger weight.

In fact, highlight could be represented and detected well
enough in gray-scaled images, so we need only calculate the gray
level deviation of the pixels. That makes the calculation simpler.
Let gk be the gray level of pixel pk, and the average gray level of
{pk | k=0…n} is

∑
=

=
n

k
kavg g

n
g

0

1 . (1)

Then the weight of pk could be defined by the reciprocal of the
squared deviation of gk:

2||

1

avgk

kk
gg

cw
−

= . (2)

The coefficient ck is a constant, which guarantees the sum of wk to
be 1. Finally, the colors of {pk | k=0…n} are blended according to
the following formula:

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∑

∑

∑

=

=

=

n

k
kk

n

k
kk

n

k
kk

Bw

Gw

Rw

B

G

R

0

0

0

. (3)

Here, (Rk, Gk, Bk) is the RGB color of pk, and (R, G, B) is the final
color for pixel p0.

Note that we assume n reference images (besides the target
image) are used in resampling and blending a pixel. These n
images are selected from all reference images according to the
angles between the viewing ray of current pixel and the rays of its
corresponding pixels. Only the images with the smallest angles, i.e.
the closest n images are used to fix the target pixel.

Using a larger number of images will make the average color
closer to the true color and help to filter out highlighted pixels.
However, it does not always lead to better result, for blending
more pixel colors would cause blurring effect, especially in the
areas with complex texture. To get a globally better result, we
adjust the value of n according to each sub-image’s gray level
deviation sum.

Assume the current sub-image is composed of m pixels, and
each pixel has a gray level of bi. Then the average gray level is

∑
=

=
m

i
iavg b

m
b

1

1 , (4)

and the deviation sum is

∑
=

−=
m

i
avgidev bbb

1

2|| . (5)

Then a given threshold τ determines the value of n:

⎩
⎨
⎧

≤
>

=
τ
τ

dev

dev

bN

bN
n

,

,

min

max (6)

That means a sub-image with more complex texture will be given
a smaller n to prevent blurring, and a sub-image with simpler
texture will be given a larger n for smoother result.

Experimental Results
Applying the method described above, we can remove

highlight spots from a group of cup photos and get satisfying
rendering results.

The original data includes 23 images, taken around the object
by a digital camera. There are obvious highlight spots in each
image. They are selected as in the left column of Fig. 4 (each
rectangle is a highlight sub-image). Using the correspondence in
the visual hull, the counterparts of a sub-image can be found in
other images (as shown in Fig. 3). Then, each pixel in the sub-
image is blended with its corresponding pixels, and result in an
image without highlight spots (right column of Fig. 4).

When deciding the number of images in use, we let Nmax=9
and Nmin=4, i.e. using 9 closest images in resampling a simple-
textured sub-image, and 4 in complex sub-images.

Figure 4. The result of removing highlight spots from reference images.
The left are original images (yellow rectangles are highlight sub-images);
the right are the resampled image, in which highlight spots have been
removed seamlessly.

Figure 3. The counterparts of a highlight sub-image. Left: The target image
(the yellow rectangle is the highlight sub-image); Right: The counterparts of
the sub-image on two other reference images (Note that they include little
highlight in them, because the object rotates while the light does not).

More highlight removal results are shown in the left part of
Fig. 5. With these resampled reference images, we can run visual
hull method again to render the object at new viewpoints. The
rendering results are free from highlights and are more realistic
and precise in color (right of Fig. 5).

Furthermore, highlight-free visual hulls would make it
possible to change the illumination in the virtual environment, and
re-light the object. All we need to do is re-calculating the diffuse
and reflection color of the object according to the virtual lights.

References
[1] A. Agrawal, R. Raskar, S.K. Nayar and Y. Li, Removing Photography

Artifacts using Gradient Projection and Flash-Exposure Sampling,
Proc. ACM SIGGRAPH 2005, pg. 828. (2005).

[2] P. Tan, S. Lin, L. Quan and H. Shum, Highlight Removal by
Illumination-Constrained Inpainting, Proc. IEEE International
Conference on Computer Vision 2003, pg. 164. (2003).

[3] P. Pérez, M. Gangnet and A. Blake, Poisson Image Editing, Proc.
ACM SIGGRAPH 2003, pg. 313. (2003).

[4] W. Matusik, C. Buehler and R. Raskar, Image-Based Visual Hulls,
Proc. ACM SIGGRAPH 2000, pg. 369. (2000).

[5] B.G. Baumgart, Geometric Modeling for Computer Vision, Ph.D.
thesis, Stanford University, October 1974.

[6] M. Li, Towards Real-Time Novel View Synthesis Using Visual Hulls,
Ph.D. thesis, Max-Planck-Institut für Informatik, September 2004.

[7] K.N. Kutulakos and S.M. Seitz, A Theory of Shape by Space Carving,
International Journal of Computer Vision, Marr Prize Special Issue,
38, 3, pg. 199. (2000).

[8] G. Slabaugh, B. Culbertson, T. Malzbender and R. Schafer, A Survey
of Methods for Volumetric Scene Reconstruction from Photographs,
Proc. International Workshop on Volume Graphics 2001, pg. 81.
(2001).

[9] K.M. Cheung, S. Baker and T. Kanade, Visual Hull Alignment and
Refinement Across Time: A 3D Reconstruction Algorithm Combining
Shape-From-Silhouette with Stereo, Proc. IEEE Conference on
Computer Vision and Pattern Recognition 2003, pg. II-375. (2003).

Author Biography
Jie Feng received her Bachelor degree from School of Mathematics

Science, Peking University, in 2000, and Ph. D. degree of Engineering from
Center for Information Science, Peking University, in 2005. Her research
interests include 3D modeling, digital geometry processing, image-based
rendering etc.

Liang Chen received his Bachelor degree (with honor), from School of
Electronic Engineering & Computer Science, Peking University in 2004. He
is now a graduate student in the same department. His research interests
include computational photography, non-photorealistic rendering,
computer animation etc.

Bingfeng Zhou received his PHD degree in Peking University. He is
now a researcher and doctoral supervisor in the Institute of Computer
Science and Technology, Peking University. His research interests
including digital geometry processing, image based rendering, none
photorealistic rendering, solid modeling, GPU technology and digital video
processing.

Figure 5. The results of removing highlight spots from several reference images, and the corresponding visual hull rendering result. Top row:
reference images (left) with highlight spots and their rendering result (right); Bottom row: resampled reference images (left) and the new rendering
result without highlights (right).

	33674
	33675
	33676
	33677
	33678
	33679
	33680
	33681
	33682
	33683
	33684
	33685
	33686
	33687
	33688
	33689
	33690
	33691
	33692
	33693
	33694
	33695
	33696
	33697
	33698
	33699
	33700
	33701
	33702
	33703
	33704
	33705
	33706
	33707
	33708
	33709
	33710
	33711
	33712
	33713
	33714
	33715
	33716
	33717
	33718
	33719
	33720
	33721
	33722
	33723
	33724
	33725
	33726
	33727
	33728
	33729
	33730
	33731
	33732
	33733
	33734
	33735
	33736
	33737
	33738
	33739
	33740
	33741
	33742
	33743
	33744
	33745
	33746
	33747
	33748
	33749
	33750
	33751
	33752
	33753
	33754
	33755
	33756
	33757
	33758
	33759
	33760
	33761
	33762
	33763
	33764
	33765
	33766
	33767
	33768
	33769
	33770
	33771
	33772
	33773
	33774
	33775
	33776
	33777
	33778
	33779
	33780
	33781
	33782
	33783
	33784
	33785
	33786
	33787
	33788
	33789
	33790
	33791
	33792
	33793
	33794
	33795
	33796
	33797
	33798
	33799
	33800
	33801
	33802
	33803
	33804
	33805
	33806
	33807
	33808
	33809
	33810
	33811
	33812
	33813
	33814
	33815
	33816
	33817
	33818
	33819
	33820
	33821
	33822
	33823
	33824
	33825
	33826
	33827
	33828
	33829
	33830
	33831
	33832
	33833
	33834
	33835
	33836
	33837
	33838
	33839
	33840
	33841
	33842
	33843
	33844
	33845
	33846
	33847
	33848
	33849
	33850
	33851
	33852
	33853
	33854
	33855
	33856
	33857
	33858
	33859
	33860

